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of peptide side chains and that the synthesis of peptidomimetics 
can provide information about the conformation of the natural 
ligands. 
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ir-Stacking interactions between aromatic rings have received 
a great deal of attention1 due to their importance in such diverse 
areas as molecular recognition,2 stereocontrol of organic reactions,3 

structure of biological molecules,4 and solid-state packing of or­
ganic molecules.5 Specific details on the nature of these inter­
actions, especially regarding the contributions of various nonco-
valent bonding forces, remain unclear. Although substituents on 
the ir-systems are known to strongly influence stacking tendencies, 
these effects cannot always be explained in terms of simply do­
nor-acceptor interactions.1* Here we would like to report on the 
self-association of phenylacetylene macrocycles (PAMs) in so­
lution. These compounds should be useful as models for quan­
titatively studying substituent effects on ir-ir interactions. 
Moreover, depending on the geometry of the aggregate, self-as­
sociation of toroidal-shaped macrocycles represents the initiation 
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(1) For general references, see: (a) Tucker, E. E.; Christian, S. D. / . Phys. 

Chem. 1979, 83,426. (b) Ravishanker, G.; Beverridge, D. L. / . Am. Chem. 
Soc. 1985,107, 2565. (c) Jorgensen, W. L.; Severance, D. L. / . Am. Chem. 
Soc. 1990,112, 4768. (d) Tucker, J. A.; Houk, K. N.; Trost, B. M. J. Am. 
Chem. Soc. 1990, 112, 5465. (e) Linse, P. / . Am. Chem. Soc. 1992, 114, 
4366. (f) Leighton, P.; Cowan, J. A.; Abraham, R. J.; Sanders, J. K. M. J. 
Org. Chem. 1988, 53, 733. (g) Hunter, C. A.; Sanders, J. K. M. / . Am. Chem. 
Soc. 1990, 112, 5525. (h) Hunter, C. A.; Meah, M. N.; Sanders, J. K. M. 
J. Am. Chem. Soc. 1990, 112, 5773. (i) Anderson, H. L.; Hunter, C. A.; 
Meah, M. N.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5780. 

(2) (a) Benzing, T.; Tjivikua, T.; Wolfe, J.; Rebek, J., Jr. Science 1988, 
242, 266. (b) Muehldorf, A. V.; Van Engen, D.; Warner, J. C ; Hamilton, 
A. D. J. Am. Chem. Soc. 1988,110, 6561. (c) Zimmerman, S. C; Wu, W. 
J. Am. Chem. Soc. 1989, 111, 8054. (d) Cochran, J. E.; Parrott, T. J.; 
Whitlock, B. J.; Whitlock, H. W. / . Am. Chem. Soc. 1992, 114, 2269. 

(3) (a) Trost, B. M.; O'Krongly, D.; Belletire, J. L. / . Am. Chem. Soc. 
1980,102,7595. (b) Evans, D. A.; Chapman, K. T.; Hung, D. T.; Kawaguchi, 
A. T. Angew. Chem., Int. Ed. Engl. 1987, 26, 1184. 

(4) (a) Burley, S. K.; Pestko, G. A. Adv. Protein Chem. 1988, 39, 125. (b) 
Saenger, W. Principles of Nucleic Acid Structure; Springer-Verlag: New 
York, 1984. 

(5) Desiraju, G. R. Crystal Engineering: The Design of Organic Solids; 
Elsevier: New York, 1989. 

0002-7863/92/1514-9701S03.00/0 

Table I. Thermodynamic Data for Dimerization of 1-5 in 
Chloroform-rf 

compd 

1 
2 
3 
4 
5 

"•assoc 
(M-1)" 

60 
18 
26 
b 
b 

AG 
(kcal mol-')" 

-2.4 
-1.7 
-1.9 
b 
b 

Mi 
(kcal mol"1) 

-5.0 ± 0.2 
-5.6 ± 0.3 
-5.1 ± 0.3 
b 
b 

AS 
(cal mol-' K"1) 

-9.2 ± 0.8 
-13.6 ± 1.0 
-10.8 ± 1.0 
b 
b 

0At 293 K. 6No evidence for dimerization was observed. 

of a noncovalently bound molecular channel. Thus, a better 
understanding of these interactions may be useful for designing 
novel, tubular mesophases,6 porous organic solids, and molecular 
monolayers for controlling transport properties at surfaces.7 

?2 

^ J k y i 1: RI = R2=RJ = RJ=RS=R6 = COCBU 

T T 2: RI = RJ = R5 = COCBU, R2=R4 = R6 = CBu 
I I 3 !R 1 =R 2 =R 3 = CCCBU1R4 = RJ=R 6 = CBU 

1. 1. 4IRI = RJ=RJ=R 4 = RS = R6 = CBU 
r \ ITS 5!R1 = R 2 =R 3 =R 4 = R5 = R6=CH2CBU 

Rs 

Using our previously reported synthetic methods,8 we have 
synthesized compounds 1-5.' It was found that the chemical shifts 
(5) of the aromatic protons of 1 depended strongly on concen­
tration. At ambient temperature, the chemical shifts (in CDCl3) 
of the two aromatic protons of 1 varied from 8.12 to 7.23 ppm 
and from 7.81 to 6.79 ppm, respectively, as the concentration 
changed from 0.83 to 106 mM. This indicates that PAM 1 
self-associates in solution.10'11 If we assume that monomer-dimer 
equilibrium is the predominant process of this self-association,12 

1H NMR measurements at different concentrations can be used 
to determine the dimerization constant, ATass0C, using a reported 
procedure.13 By this method, ATaas0C was found to be 60 M"1 at 
20 0C, which is of the same order as porphyrin dimerization in 
CDCl3.

14 Since 1 has no functionality to engage in hydrogen 
bonding, we believe that the observed behavior results from ir-
stacking interactions. This idea is supported by the observation 
that only the protons directly attached to the aromatics show 
significant concentration-dependent chemical shifts. It is also 
consistent with the fact that we observed no evidence for self-
association in benzene-rf6.

15 We suspect that the well-defined, 
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rigidly held planar geometry of PAMs promotes cooperative, ir-ir 
interactions among several pairs of aromatic rings in neighboring 
molecules. Consequently, weak interactions between a single pair 
of aromatic rings that may be difficult to observe in small mol­
ecules are amplified by the PAM molecular architecture.16 

Because our synthetic chemistry allows aromatic functionalities 
to be varied easily, PAMs should provide a unique opportunity 
to study substituent effects on ^-stacking interactions. 

âssoc was also found to vary significantly with temperature. 
According to van't Hoff analyses, AH = -5.0 ± 0.2 kcal mol"1 

and AS = -9.2 ± 0.8 cal mol"1 K-1. Surprisingly, PAM 2, with 
alternating alkoxyl and ester groups, was found to have a smaller 
dimerization constant than 1 at 20 0C (K38800 = 18 M"1). Further 
studies give AH = -5.6 ± 0.3 kcal mol"1 and AS = -13.6 ± 1.0 
cal mol"1 K"1 for the self-association of 2. These results suggest 
that donor-acceptor interactions between alkoxyl and ester groups 
slightly favor ir-stacking enthalpically, but disfavor ir-stacking 
entropically relative to 1. Overall, the entropy effect dominates 
near ambient temperature, resulting in a decrease in K3111x for 2. 
The difference in AS might also indicate that the dimer pair of 
2 is more highly ordered than that of 1. For 3, which has seg­
regated alkoxyl and ester groups, it was found that Kiasoc = 26 
M"1, AH = -5.1 ± 0.3 kcal mol"1, and AS = -10.8 ± 1.0 cal mol"1 

K"1. It is interesting to note that AS for dimerization of 1,2, and 
3 does not correlate with their symmetry, but may be rationalized 
by considerations of the shape of electrostatic potential surface 
of the dimer pair. Preliminary calculations based on the Hunt­
er-Sanders model'8 suggest a face-to-face geometry with a 30° 
rotational off-set around the principal axis for the dimer of 1. 

No evidence of self-association was observed for 4 or 5. The 
chemical shifts of the aromatic protons of these PAMs remain 
essentially constant with concentration and temperature. This 
clearly shows that aromatic substituents have a strong influence 
on the ir-stacking interaction. We have also attempted to study 
the heteroassociation of 1 and 4 as well as 1 and 5 by NMR 
titration. We were unable to obtain accurate values of these 
heteroassociation constants because of the strong self-association 
of 1. Qualitatively, however, the heteroassociation appears not 
to dominate over self-association of 1. All of these data are 
consistent with the model developed by Hunter and Sanders.lg 

Their model predicts that ir-ir interactions between two ir-deficient 
aromatic systems can be more favorable than those between a 
jr-deficient and ir-rich system or two ir-rich systems. 

In conclusion, we have demonstrated that PAMs are valuable 
models for studying the influence of chemical structure on ir-r 
interactions. We hope to use this information to design modular 
building blocks that can engage in specific noncovalent bonding 
for the rational construction of molecular materials. 
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High critical temperatures T1. invite the probing of the electronic 
spectra of superconducting oxocuprates by electrochemical study 
of charge transfer at the superconductor/electrolyte interface. 
Hitherto solid electrolytes1'2 or frozen aqueous glasses3,4 have been 
employed, the latter involving irresolvably complex proton re­
ductions3 or poorly-resolved FeII/m processes.4 Electron transfer 
effected between a superconducting electrode and free electroactive 
species in a fluid solution offers a wider choice of systems and 
more intimate electrode/electrolyte contact.5 R. W. Murray et 
al.,4"9 having developed low-temperature electrolytes and oxo­
cuprate microelectrodes (on which low currents / minimize large 
iR potential drops through high electrolyte resistances R at ~ 100 
K), now employ silver-coated oxocuprate macroelectrodes10 (with 
proximity-effect Ag superconduction) bearing surface-bound 
electroactive species. 

Following experimental advances i-v, we can now report 
free-solute ferrocene electrochemistry in fluid electrolyte at 
102-104 K (i.e., <rc) on superconducting Bi(Pb) 2223 oxocuprate 
itself (PbC34Bi184Sr191Ca^OsCu306O1), Tc being established as 105 
K by four-probe resistivity measurements. 

(i) A new <TC solvent (cf. ref 5), of mixed chloroethane/tet-
rahydrofuran plus LiBF4 background electrolyte, remains a su­
percooled glass retaining sufficient fluidity to allow significant 
diffusion at the electrode for > 10 min. 

(ii) Epoxy-embedded microelectrode fabrication from a wholly 
encapsulated sample8 has been improved using partial encapsu­
lation, thus. A ~5-mm-long wedge-shaped fragment, cut from 
a pressed oxocuprate pellet, is attached to copper wire at its rear 
edge with Ag paint and sanded to a point with fine emery paper. 
By standing this construction on its tip in a cylindrical PTFE mold 
subsequently filled with a cryorobust resin, only the extremity is 
exposed to provide the electrode surface. 

(iii) A four-electrode resistance probe used as the electrical 
connection to the oxocuprate allows observation of the normal-
to-superconducting transition prior to experimentation, and its 
reverse afterward. Thermal equilibrium at <TC (demonstrated 
by steady thermocouple and sample resistance readings) is rapidly 
restored (<10 min) after electrolyte injection (item v below), 
thermal perturbations being minimized by the large thermal mass 
of the cell. 
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